

Professional · Creative For The World

Joint Class-Affinity Loss Correction for Robust Medical Image Segmentation with Noisy Labels

Xiaoqing Guo and Yixuan Yuan

Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China

 $_{2}T_{C}$

Background & motivation

Background

With limited budgets and efforts, the resulting dataset would be noisy, and the presence of label noises may mislead the segmentation model to memorize wrong semantic correlations, resulting in severely degraded generalizability. Hence, developing medical image segmentation techniques that are robust to noisy labels in training data is of great importance.

Motivation

Almost all existing image segmentation methods tackle label noise issues merely in a pixel-wise manner. We found that the pair-wise manner can greatly reduce the noise rate. For example, if one pixel in a pair is mislabeled (e.g. the red rectangle) or even both pixels are mislabeled (e.g. the orange rectangle), the affinity label of this pair might be correct, thereby reducing the noise rate from 44% to 23%.

0 0 1 1 2 2 3 3 0									0 1 1 2 2 3 3 0 0							2/31/31/21/21/21/21/21/21/21/21/2	7		
1	1	0	0		0	0	0	1	1	0	0	0 0				1	1	Class-level NTN Noise rate:	V
0	0	1	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	44%	

Experiment Results

Dataset

We validate JCAS on the surgical instrument dataset Endovis18 [1]. It consists of 2384 images (1639 training & 596 test images) annotated with the instrument part labels, including shaft, wrist and clasper classes. Each image is resized into a resolution of 256x320 in preprocessing.

Noise Patterns

We conduct experiments under both synthetic label noises (i.e., elipse, symmetric and asymmetric noises) and real-world label noise (i.e., noisy pseudo labels in source-free domain adaptation (SFDA)), as illustrated in Fig. 3.

	0	0	1	1	0	0	0	0	0		0	0	0	1	1	0	0	0	0	11/20 9/20
	0	0	0	0	1	1	0	0	0		0	0	0	1	1	0	0	0	0	
	0	0	0	0	1	1	0	0	0		0	0	0	0	0	1	1	0	0	10/01 50/01 - A
	0	0	0	0	0	0	1	1	0		0	0	0	0	0	1	1	0	0	Affinity-level NTM
	0	0	0	0	0	0	1	1	0		1	0	0	0	0	0	0	1	1	Noise rate:
	1	1	0	0	0	0	0	0	1		1	0	0	0	0	0	0	1	1	23%
Clean affinity label Noisy affinity label																				
F	Fig. 1. A toy example to illustrate the comparison between																			

pixel-wise class label and pair-wise affinity label.

Our contribution

1) Unifying the pixel-wise and pair-wise manners, we propose a robust Joint Class-Affinity Segmentation (JCAS) framework to combat label noise issues in medical image segmentation.

2) We devise a differentiated affinity reasoning (DAR) module to guide the refinement of pixelwise predictions with differentiated pair-wise affinity relations.

3) We design a class-affinity loss correction (CALC) strategy to further correct both pixel-wise and pair-wise supervision signals, and in the meanwhile, unify the pixel-wise and pair-wise supervisions through the theoretically derived consistency regularization.

5) Extensive experiments on synthetic and real-world noisy labels verify the effectiveness of JCAS.

Fig. 3. Illustration of dataset with different kinds of label noises.

Comparison with State-of-the-art Methods & Ablation Study

Table 1. Comparison under four label noises. Best and second best results are high**lighted** and underlined. 'w/ Affinity' introduces pair-wise supervision \mathcal{L}_{Bi}^{A} to backbone.

Noicos	Mathad	Sha	aft	Wr	ist	Clas	sper	Average	
noises	Method	Dice (%)	Jac (%)	Dice (%)	Jac (%)	Dice (%)	Jac (%)	Dice (%)	Jac (%)
	Upper bound	88.740	81.699	65.045	52.627	70.531	56.618	74.772	63.648
	RAUNet $(19')$ [13]	83.137	74.139	56.941	43.215	61.081	45.883	67.053	54.412
	LWANet $(20')$ [12]	81.945	72.735	53.626	40.886	64.364	49.781	66.645	54.468
	CSS(21') [14]	84.577	75.736	57.597	43.687	63.686	48.347	<u>68.620</u>	55.923
	MTCL (21') [19]	72.719	60.540	39.386	27.474	49.662	35.085	53.922	41.033
	SR(21') [23]	79.966	69.621	53.540	39.747	60.179	44.775	64.561	51.381
Ellipse	VolMin $(21')$ [11]	81.320	70.758	60.470	46.408	58.203	42.524	66.664	53.230
	Baseline [3]	79.021	68.097	42.069	29.582	55.489	40.175	58.860	45.951
	w/ Affinity	82.158	72.339	49.128	35.455	58.933	43.594	63.406	50.463
	w/ DAR	82.698	72.992	52.207	38.442	61.544	46.027	65.483	52.487
	w/ CALC	82.973	73.126	61.885	47.527	60.416	44.821	68.425	55.158
	Ours (JCAS)	84.683	75.378	65.599	51.623	63.871	48.356	71.384	58.452
	RAUNet (19') [13]	68.044	54.397	31.581	20.676	41.302	27.819	46.976	34.297
	LWANet $(20')$ [12]	0.294	0.150	10.089	5.908	10.228	5.489	6.870	3.849
	CSS(21') [14]	86.555	78.451	32.363	20.767	53.364	37.901	57.427	45.706
Symmotric	MTCL (21') [19]	78.480	67.855	50.011	38.013	55.515	40.411	61.336	48.760
Symmetric	SR(21') [23]	86.648	78.823	58.217	46.870	64.643	50.120	69.836	58.604
	VolMin $(21')$ [11]	86.811	78.834	63.712	51.259	66.604	52.096	$\underline{72.376}$	60.730
	Baseline [3]	85.021	76.419	57.026	44.563	63.255	48.395	68.434	56.459
	Ours (JCAS)	88.285	80.692	65.759	53.487	68.129	53.821	74.058	62.667
	RAUNet (19') [13]	87.255	79.983	59.462	46.639	67.347	52.801	71.355	59.808
	LWANet (20') [12]	0.015	0.007	40.548	30.683	9.060	4.825	16.541	11.838
	CSS(21') [14]	89.825	83.543	43.743	30.569	69.285	54.758	67.618	56.290
Asymmetric	MTCL (21') [19]	74.544	62.525	41.433	30.533	48.077	33.676	54.685	42.244
Asymmetric	SR(21') [23]	86.360	78.055	62.854	49.651	65.483	50.962	71.566	59.556
	VolMin $(21')$ [11]	86.840	78.796	$\underline{63.345}$	51.137	65.220	50.996	<u>71.802</u>	60.310
	Baseline [3]	84.497	75.607	58.717	46.060	61.662	46.770	68.292	56.146
	Ours (JCAS)	88.247	80.730	67.298	54.922	67.686	53.436	74.410	63.029
	RAUNet (19') [13]	73.370	61.568	56.063	42.570	45.979	31.720	58.471	45.286
	LWANet $(20')$ [12]	75.377	64.457	53.203	39.799	48.558	34.191	59.046	46.149
	CSS(21') [14]	74.419	64.261	61.765	47.880	45.749	31.709	60.644	47.950
SEDA	MTCL (21') [19]	72.289	60.346	51.095	37.972	38.762	25.567	54.048	41.295
SF DA	SR(21') [23]	75.992	64.835	57.370	43.863	40.471	27.388	57.944	45.362
	VolMin (21') [11]	76.641	65.063	58.285	44.389	41.780	28.324	58.902	45.925
	Baseline [3]	76.107	64.858	56.259	42.740	41.364	28.091	57.910	45.230
	Ours (JCAS)	$\underline{76.540}$	65.300	59.904	46.104	48.725	34.283	61.723	48.562

Fig. 2. Illustration of the proposed JCAS framework, composed of (a) DAR module and (b) CALC strategy.

Joint Class-Affinity Segmentation (JCAS) framework

- JCAS framework has two supervision signals, derived from noisy class labels and noisy affinity labels, for regularizing pixel-wise predictions (the upper branch in Fig. 2) and pair-wise affinity relations (the lower branch in Fig. 2), respectively.
- These two supervision signals are complementary to each other since the pixel-wise one preserves semantics and the pair-wise one reduces noise rate.

• Differentiated Affinity Reasoning (DAR) module

- Pair-wise affinity relations P' derived at the feature level model the contextual dependencies, highlighting these pixel pairs belonging to the same class and revealing the intra-class affinity.
- The reverse affinity map $P'_{re} = norm(1 P')$ measures the dissimilarity between two pixels and reveals the inter-class affinity relations.
- As in Fig. 2.a, DAR differentiates affinity relations to explicitly aggregate intra-class correlated

information ($P_{intra}(k_1) = P(k_1) + \sum P'(k_1, k_2)Q(k_2)$) and eliminate inter-class irrelevant information $(P_{inter}(k_1) = P(k_1) - \sum P'_{re}(k_1, k_2)Q(k_2))$, guiding the refinement of pixel-wise predictions.

Class-Affinity Loss Correction (CALC) strategy

CACL strategy models noise label distributions in class labels and affinity labels as two NTMs (T_C and T_A in Fig. 2.b) for loss correction (\mathcal{L}_{LC}^C and \mathcal{L}_{LC}^A in Fig. 2.b).

• Visualization of Segmentation Results

• Test *Jac* Curve in Training Stage

$$egin{aligned} \mathcal{L}_{LC}^{C} &= -\sum_{k}^{H imes W} \widetilde{oldsymbol{Y}}(k) \log[oldsymbol{P}(k)oldsymbol{T}_{C}] \ \mathcal{L}_{LC}^{A} &= -\sum_{k}^{H imes W} \widetilde{oldsymbol{Y}}(k) \log[oldsymbol{P'}(k)oldsymbol{T}_{A}] + (1-\widetilde{oldsymbol{Y}}(k)) \log(1-oldsymbol{P'}(k)oldsymbol{T}_{A}) \end{aligned}$$

CACL strategy unifies pixel-wise and pair-wise supervisions via the theoretically derived classaffinity consistency regularization (\mathcal{L}_{CACR} in Fig. 2.b), thereby facilitating the noise resistance.

$$egin{aligned} \mathcal{L}_{CACR} &= ig\| oldsymbol{T}_{C o A} - oldsymbol{T}_{A} ig\|_{2} \ oldsymbol{T}_{C o A}(0,0) &= 1 - oldsymbol{T}_{C o A}(0,1), \ oldsymbol{T}_{C o A}(0,1) &= rac{\sum_m [N_m \sum_n oldsymbol{T}_C(m,n)]^2 - \sum_m (N_m)^2 \|oldsymbol{T}_C \|_2^2}{\sum_m [N_m (\sum_m N_m - N_m)]}, \ oldsymbol{T}_{C o A}(1,0) &= 1 - oldsymbol{T}_{C o A}(1,1), \ oldsymbol{T}_{C o A}(1,1) &= rac{\sum_m (N_m)^2 \|oldsymbol{T}_C \|_2^2}{\sum_m (N_m)^2}. \end{aligned}$$

Reference

[1] Allan, M., Kondo, S., Bodenstedt, S., Leger, S., Kadkhodamohammadi, R., Luengo, I., Fuentes, F., Flouty, E., Mohammed, A., Pedersen, M., et al.: 2018 robotic scene segmentation challenge. arXiv preprint arXiv:2001.11190 (2020) [2] Allan, M., Shvets, A., Kurmann, T., Zhang, Z., Duggal, R., Su, Y.H., Rieke, N., Laina, I., Kalavakonda, N., Bodenstedt, S., et al.: 2017 robotic instrument segmen-tation challenge. arXiv preprint arXiv:1902.06426 (2019)

(a) Ellipse (b) Symmetric (c) Asymmetric (d) SFDA Fig. 5. Curve of test *Jac* vs. epoch with four different types of noise labels.

Conclusion

We propose a robust JCAS framework to combat label noise issues in medical image segmentation. Complementing the widely used pixel-wise manner, we introduce the pair-wise manner by capturing affinity relations among pixels to reduce noise rate. Then a DAR module is devised to rectify pixel-wise segmentation predictions by reasoning about intra-class and interclass affinity relations. We further design a CALC strategy to unify pixel-wise and pair-wise supervisions, and facilitate noise tolerances of both supervisions. Extensive experiments under four noisy labels corroborate the noise immunity of JCAS.

