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Background & motivation

®Background

With limited budgets and efforts, the resulting dataset would be noisy, and the presence of label
noises may mislead the segmentation model to memorize wrong semantic correlations,
resulting in severely degraded generalizability. Hence, developing medical image segmentation
techniques that are robust to noisy labels in training data is of great importance.
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noise rate from 44% to 23%. Fig. 1. A toy example to illustrate the comparison between

. pixel-wise class label and pair-wise affinity label.
®Our contribution

1) Unifying the pixel-wise and pair-wise manners, we propose a robust Joint Class-Affinity
Segmentation (JCAS) framework to combat label noise issues in medical image segmentation.

2) We devise a differentiated affinity reasoning (DAR) module to guide the refinement of pixel-
wise predictions with differentiated pair-wise affinity relations.

3) We design a class-affinity loss correction (CALC) strategy to further correct both pixel-wise
and pair-wise supervision signals, and in the meanwhile, unify the pixel-wise and pair-wise
supervisions through the theoretically derived consistency regularization.

5) Extensive experiments on synthetic and real-world noisy labels verify the effectiveness of JCAS.

Methodology
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Fig. 2. lllustration of the proposed JCAS framework, composed of (a) DAR module and (b) CALC strategy.

® Joint Class-Affinity Segmentation (JCAS) framework

- JCAS framework has two supervision signals, derived from noisy class labels and noisy affinity
labels, for regularizing pixel-wise predictions (the upper branch in Fig. 2) and pair-wise affinity
relations (the lower branch in Fig. 2), respectively.

- These two supervision sighals are complementary to each other since the pixel-wise one
preserves semantics and the pair-wise one reduces noise rate.

® Differentiated Affinity Reasoning (DAR) module

- Pair-wise affinity relations P’ derived at the feature level model the contextual dependencies,
highlighting these pixel pairs belonging to the same class and revealing the intra-class affinity.

- The reverse affinity map P'.., = norm(1 — P") measures the dissimilarity between two pixels
and reveals the inter-class affinity relations.

- Asin Fig. 2.3, DAR differentiates affinity relations to explicitly aggregate intra-class correlated

information ( Pintra(k1) = P(k1) + ) P’'(k1,k2)Q(k2) ) and eliminate inter-class irrelevant information
ko

(Pinter (k1) = P(k1) — Y Pre(k1,k2)Q(k2) ), guiding the refinement of pixel-wise predictions.
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® Class-Affinity Loss Correction (CALC) strategy

- CACL strategy models noise label distributions in class labels and affinity labels as two NTMs

(T and T4 in Fig. 2.b) for loss correction (L, and Lf- in Fig. 2.b).
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- CACL strategy unifies pixel-wise and pair-wise supervisions via the theoretically derived class-
affinity consistency regularization (L. 4cr in Fig. 2.b), thereby facilitating the noise resistance.
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Experiment Results

® Dataset

We validate JCAS on the surgical instrument dataset Endovis18 [1]. It consists of 2384 images
(1639 training & 596 test images) annotated with the instrument part labels, including shaft,
and classes. Each image is resized into a resolution of 256x320 in preprocessing.

® Noise Patterns

We conduct experiments under both synthetic label noises (i.e., elipse, symmetric and
asymmetric noises) and real-world label noise (i.e., noisy pseudo labels in source-free domain
adaptation (SFDA)), as illustrated in Fig. 3.

Ellipse

symmetric

Ground Truth

Symmetric

o’ -

Fig. 3. lllustration of dataset with different kinds of label noises.

® Comparison with State-of-the-art Methods & Ablation Study

Table 1. Comparison under four label noises. Best and second best results are high-
lighted and underlined. ‘w/ Affinity’ introduces pair-wise supervision £4; to backbone.
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Method Shaft Wrist Clasper Average

Dice (%) Jac (%)|Dice (%) Jac (%)|Dice (%) Jac (%)|Dice (%) Jac (%)

Upper bound 88.740 81.699 | 65.045 52.627 | 70.531 56.618 | 74.772 63.648
RAUNet (19°) [13]| 83.137 74.139 | 56.941 43.215 | 61.081 45.883 | 67.053 54.412
LWANet (20") [12]| 81.945 72.735 | 53.626 40.886 | 64.364 49.781| 66.645 54.468
CSS (21') [14] 84.577 75.736 | 57.597 43.687 | 63.686 48.347 | 68.620 55.923
MTCL (21") [19] | 72.719 60.540 | 39.386 27.474 | 49.662 35.085 | 53.922 41.033
SR (21") [23] 79.966 69.621 | 53.540 39.747 | 60.179 44.775 | 64.561 51.381
Ellipse VolMin (21') [11] | 81.320 70.758 | 60.470 46.408 | 58.203 42.524 | 66.664 53.230
Baseline (3| 79.021 68.097 | 42.069 29.582 | 55.489 40.175 | 58.860 45.951
w/ Affinity 82.158 72.339 | 49.128 35.455 | 58.933 43.594 | 63.406 50.463
w/ DAR 82.698 72.992 | 52.207 38.442 | 61.544 46.027 | 65.483 52.487

w/ CALC 82.973 73.126 | 61.885 47.527 | 60.416 44.821 | 68.425 55.158
Ours (JCAS) 84.683 75.378 | 65.599 51.623 | 63.871 48.356 | 71.384 58.452
RAUNet (19°) [13]| 68.044 54.397 | 31.581 20.676 | 41.302 27.819 | 46.976 34.297
LWANet (20") [12]| 0.294 0.150 | 10.089 5.908 | 10.228  5.489 6.870 3.849
CSS (217) [14] 86.550 78.451 | 32.363 20.767 | 53.364 37.901 | 57.427 45.706
Symmetric | MTCL (21') [19] | 78.480  67.855 | 50.011 38013 | 55.515 40411 | 61.336 48.760
SR (21") (23] 86.648 78.823 | 58.217 46.870 | 64.643 50.120 | 69.836 58.604
VolMin (21') [11] | 86.811 78.834 | 63.712 51.259 | 66.604 52.096 | 72.376 60.730
Baseline (3| 85.021 76.419 | 57.026 44.563 | 63.255 48.395 | 68.434 56.459
Ours (JCAS) 88.285 80.692 | 65.759 53.487 | 68.129 53.821 | 74.058 62.667
RAUNet (19°) [13]| 87.255 79.983 | 59.462 46.639 | 67.347 52.801 | 71.355 59.808
LWANet (20") [12]| 0.015 0.007 | 40.548 30.683 | 9.060 4.825 | 16.541 11.838
CSS (21') [14] 89.825 83.543 | 43.743 30.569 | 69.285 54.758 | 67.618 56.290
Asymmetric| MTCL (21) [19] | 74544 62525 | 41433 30.533 | 48.077 33.676 | 54.685 42244
SR (21") [23] 86.360 78.055 | 62.854 49.651 | 65.483 50.962 | 71.566 59.556
VolMin (21') [11] | 86.840 78.796 | 63.345 51.137 | 65.220 50.996 | 71.802 60.310
Baseline (3| 84.497 75.607 | 58.717 46.060 | 61.662 46.770 | 68.292 56.146
Ours (JCAS) 88.247 80.730 | 67.298 54.922| 67.686 53.436 | 74.410 63.029
RAUNet (19°) [13]| 73.370 61.568 | 56.063 42.570 | 45.979 31.720 | 58.471 45.286
LWANet (20") [12]| 75.377 64.457 | 53.203 39.799 | 48.558 34.191 | 59.046 46.149
CSS (217) [14] 74.419 64.261 | 61.765 47.880| 45.749 31.709 | 60.644 47.950
MTCL (217) [19] | 72.289 60.346 | 51.095 37.972 | 38.762 25.567 | 54.048 41.295
SR (21") (23] 75.992 64.835 | 57.370 43.863 | 40.471 27.388 | 57.944 45.362
VolMin (21") [11] | 76.641 65.063 | 58.285 44.389 | 41.780 28.324 | 58.902 45.925
Baseline (3| 76.107 64.858 | 56.259 42.740 | 41.364 28.091 | 57.910 45.230
Ours (JCAS) 76.540 65.300| 59.904 46.104 | 48.725 34.283 | 61.723 48.562
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Fig. 4. Comparison of segmentation results.
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® Test Jac Curve in Training Stage
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Fig. 5. Curve of test Jac vs. epoch with four different types of noise labels.

Conclusion

We propose a robust JCAS framework to combat label noise issues in medical image
segmentation. Complementing the widely used pixel-wise manner, we introduce the pair-wise
manner by capturing affinity relations among pixels to reduce noise rate. Then a DAR module is
devised to rectify pixel-wise segmentation predictions by reasoning about intra-class and inter-
class affinity relations. We further design a CALC strategy to unify pixel-wise and pair-wise
supervisions, and facilitate noise tolerances of both supervisions. Extensive experiments under
four noisy labels corroborate the noise immunity of JCAS.
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