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Ø Major Challenge of DA Task
n Label noise issues in pseudo-labeled target data
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Ø Major Limitations of ST
n Ignore the open-set pseudo label noises in target domain
n Simply dropping confusing pixels leads to biased optimization

[1] Zou, Yang, et al. "Confidence regularized self-training." ICCV. 2019.

Self-training for DA in semantic segmentation [1]
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Ø Problem Definition of ST in DA
n Carefully address confusing pixels rather than drop them 
n Deal with open-set label noises

Ø Problem Reformulation
n The problem of alleviating pseudo label noises in DA                    the problem of estimating SimT

Ø Our Solution - Simplex noise transition matrix (SimT, T)
n Model the closed- and open-set label noise distributions

n Rectify supervision signals (i.e. loss) derived from noisy pseudo labels, thereby using all target data
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n In the toy example of Fig. 1, SimT is defined as 𝑻∈[0, 1]5×3
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Method

Ø Geometry Analysis of SimT
n In the toy example of Fig. 1, SimT is defined as 𝑻∈[0, 1]5×3
n Rows [𝑻.,:, 𝑻1,:, 𝑻2,:] model closed-set label noise distribution, and rows [𝑻3,:, 𝑻4,:] model open-set one 
n Each row 𝑻5,: is a 3D point within the blue triangle
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Ø Geometry Analysis of SimT
n Given an input 𝒙, the noisy class posterior 𝑝 (𝒚 𝒙 is a red point scattered in the blue triangle
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Ø Geometry Analysis of SimT
n Given an input 𝒙, the noisy class posterior 𝑝 (𝒚 𝒙 is a red point scattered in the blue triangle
n 𝑝 (𝒚 𝒙 is the convex combination among rows of 𝑻 with the factor of clean class posterior 𝑝 𝒚 𝒙 . 
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Ø Geometry Analysis of SimT
n In blue triangle, the closer 𝑝 (𝒚 𝒙 is to 𝑻5,: of Sim{𝑻}, the more likely 𝒙 belongs to class 𝑐. 
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Method

Ø Geometry Analysis of SimT
n In blue triangle, the closer 𝑝 (𝒚 𝒙 is to 𝑻5,: of Sim{𝑻}, the more likely 𝒙 belongs to class 𝑐. 
n Hence, the simplex formed by rows of 𝑻 should enclose 𝑝 (𝒚 𝒙 for any 𝒙.
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Method

Ø Volume Minimization (VM) for Estimating SimT
n VM is based on the sufficiently scattered assumption [2], which is easily satisfied in segmentation
n Directly applying VM that constrains a square 𝑻 to SimT is problematic:

(1) Volume of non-square SimT cannot be computed by its determination
(2) By minimizing volume of SimT, open-set part of SimT will collapse to a trivial solution

9
[2] Xuefeng Li,Tongliang Liu,Bo Han,Gang Niu,and Masashi Sugiyama. Provably end-to-end label-noise learning without anchor points. 
In ICML, pages 6403–6413, 2021.
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Ø Three proposed regularizations for estimating SimT:
n Volume regularization: 
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Method

Ø Three proposed regularizations for estimating SimT:
n Convex guarantee:
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Ø Scenario of GTA5→Cityscapes
n GTA5: 24,966 images captured from a virtual video game, including 19 shared classes
n CityScapes: a real-world dataset collected in driving scenarios, including 15 open-set classes

Training set: 2,975 unlabeled images       Test set: 500 images

Experiments
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Experiments
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Ø Scenario of Endovis17→Endovis18
n Endovis17: 1800 images include 3 shared classes `scissor', `needle driver', `forceps'
n Endovis18: 1800 images include 3 open-set classes `ultrasound probe', `suction instrument', `clip applier' 

Training set: 1639 unlabeled images        Test set: 596 validation images

Endovis17 Endovis18
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Ø Quantitative Results
n Results of UDA and SFDA on adapting GTA5 to Cityscapes
n Results of UDA and SFDA on adapting Endovis17 to Endovis18
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Experiments

Ø Qualitative Results
n Results of UDA on adapting GTA5 to Cityscapes
n Results of UDA on adapting Endovis17 to Endovis18
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Experiments

Ø Qualitative Results
n Results of SFDA on adapting GTA5 to Cityscapes
n Results of SFDA on adapting Endovis17 to Endovis18
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Experiments

Ø Qualitative Results
n Visualization of SimT
n Visualization of detecting open-set class pixels
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Ø We present a general DA method to robustly learn from noisy pseudo-labeled target data, including
closed-set and open-set label noises.

Ø We model the closed- and open-set noise distributions of pseudo labels by SimT, and use geometry
analysis to estimate it, which is further used to benefit loss correction for noisy target data learning.

Ø SimT is a plug-and-play technique that can be applied to a wide range of tasks, such as UDA and
SFDA, to solve the pseudo label noise issue.

Ø Future work: introduce open-set class prior to enable the semantic separation inner open-set regions.
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Summarization
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