

MetaCorrection: Domain-aware Meta Loss Correction for Unsupervised Domain Adaptation in Semantic Segmentation

Xiaoqing Guo^{1*} Chen Yang^{1*} Baopu Li² Yixuan Yuan^{1†} ¹ City University of Hong Kong ² Baidu USA

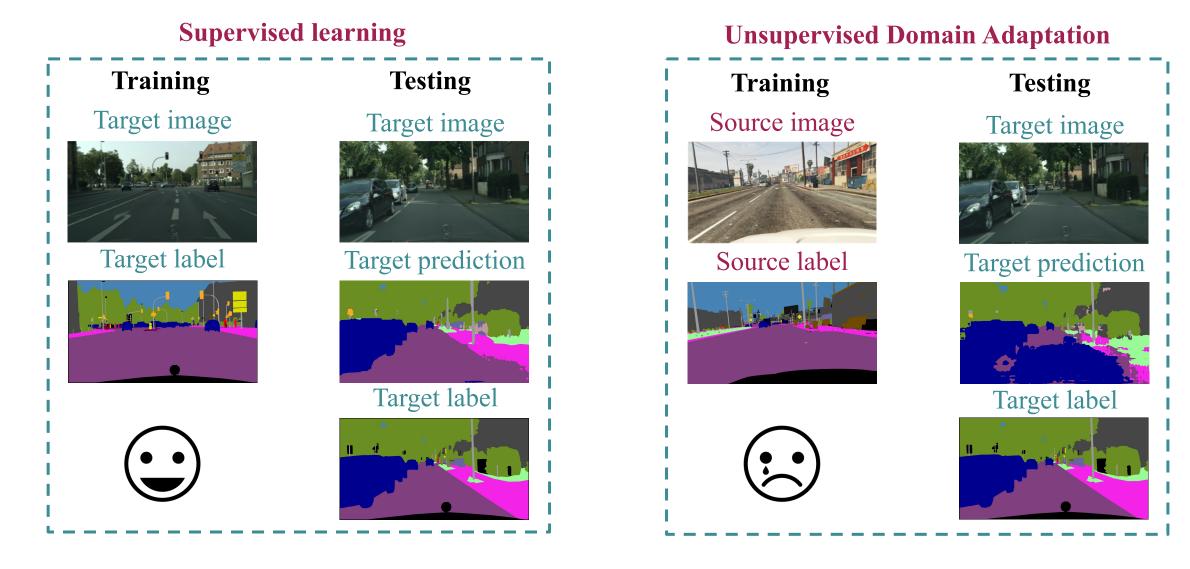
xqguo.ee@my.cityu.edu.hk cyang.eeg@my.cityu.edu.hk baopuli@baidu.com yxyuan.ee@cityu.edu.hk

* Xiaoqing Guo and Chen Yang contribute equally.
† Yixuan Yuan is the corresponding author

Introduction

CityUU Department of Electrical Engineering 香港城市大學 City University of Hong Kong

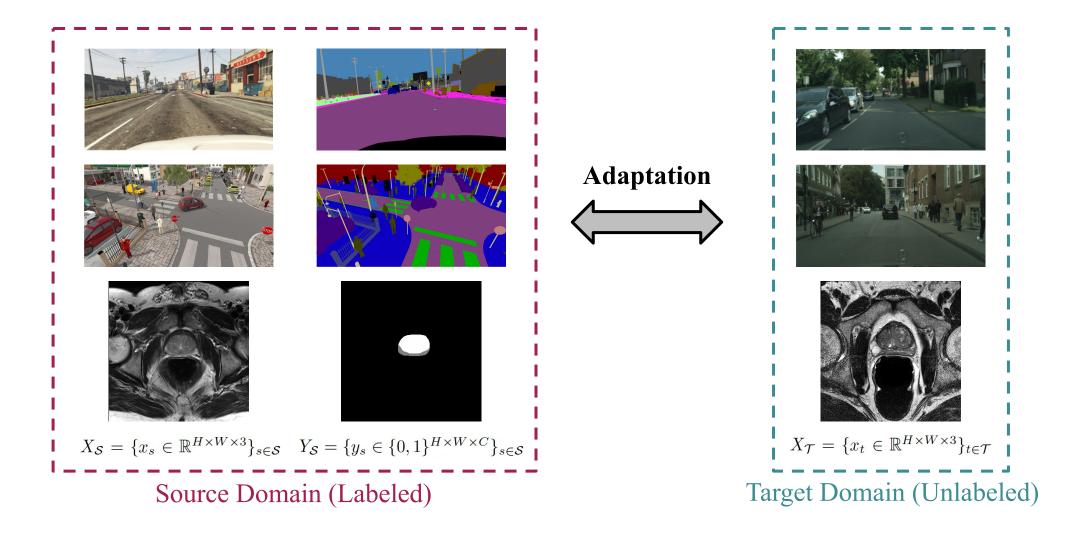
Unsupervised Domain Adaptation (UDA) in Semantic Segmentation



Introduction

Department of Electrical Engineering 香港城市大學 City University of Hong Kong

> Unsupervised Domain Adaptation (UDA) in Semantic Segmentation



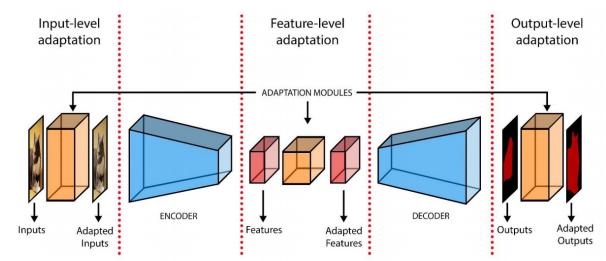
Introduction

Department of **Electrical Engineering**

Two major lines of approaches:

Adversarial learning

- Ignore the domain-specific knowledge
- Could not guarantee the sufficient discriminative capability for the specific task.



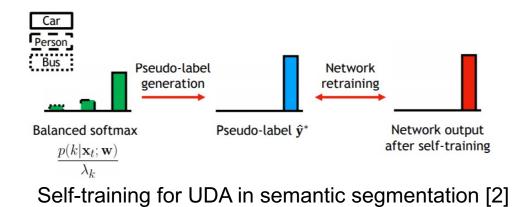
Adversarial learning for UDA in semantic segmentation [1]

Self-training

The generated pseudo labels contain noises.

$$\mathcal{L}_{ST} = \mathcal{L}_{seg}^{\mathcal{S}}(X_{\mathcal{S}}, Y_{\mathcal{S}}) + \mathcal{L}_{seg}^{\mathcal{T}}(X_{\mathcal{T}}, \widehat{Y}_{\mathcal{T}})$$

= $-\sum_{s \in \mathcal{S}} y_s \log f(x_s, \mathbf{w}) - \sum_{t \in \mathcal{T}} \widehat{y}_t \log f(x_t, \mathbf{w}).$



[1] Toldo, Marco, et al. "Unsupervised domain adaptation in semantic segmentation: a review." Technologies 8.2 (2020): 35. [2] Zou, Yang, et al. "Confidence regularized self-training." ICCV. 2019.

Motivation

> Noise Transition Matrix (NTM)

- It aims to model the inter-class misclassification relationship of target data.
- Domain-aware Meta-learning for Loss Correction (DMLC)
 - Since ground truth in the target domain is not available, NTM can't be directly calculated, We try to estimate the NTM in a learning-to-learn fashion.

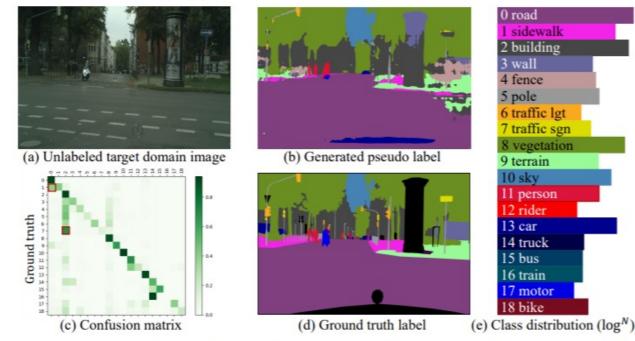
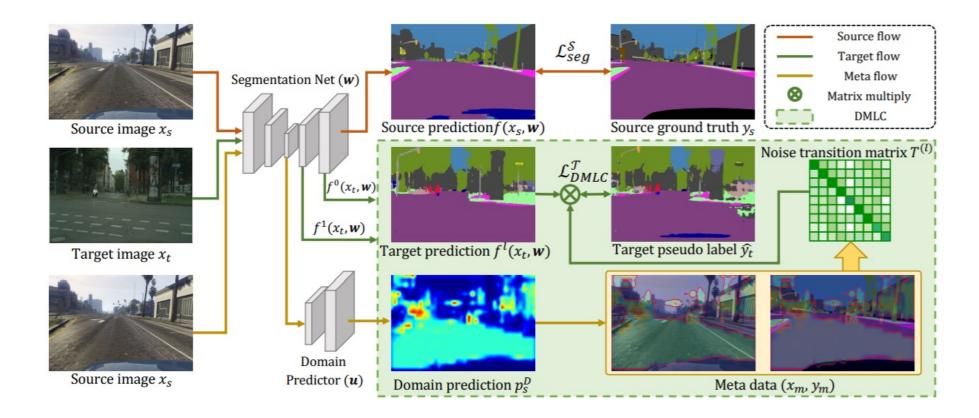


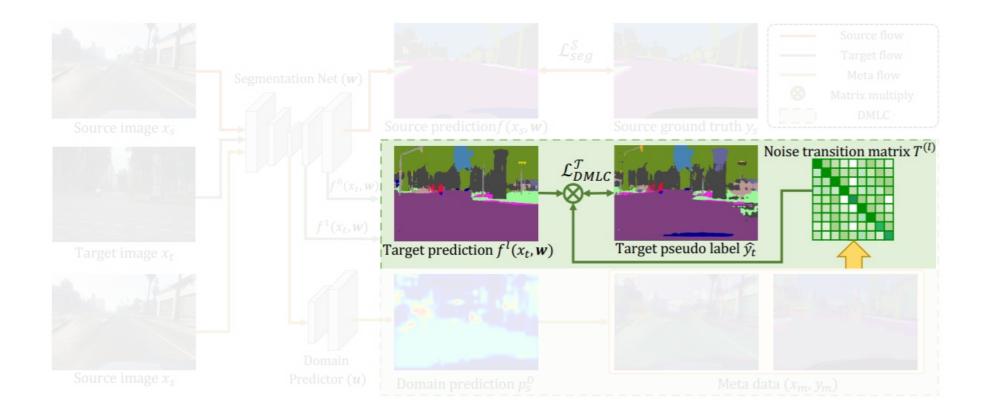
Figure 1. Sample of the noisy pseudo labels on Cityscapes [10]. The generated pseudo labels suffer from the data distribution biases in comparison to the ground truth.

MetaCorrection framework

- A learnable NTM formally models the noise distribution of pseudo labels in target domain.
- DMLC strategy estimates NTM for loss correction in a data driven manner.
- Provide matched and compatible supervision signals for different layers.



- > Self-training with Loss Correction using NTM
 - A learnable NTM formally models the noise distribution of pseudo labels in target domain.
 - DMLC strategy estimates NTM for loss correction in a data driven manner.
 - Provide matched and compatible supervision signals for different layers.

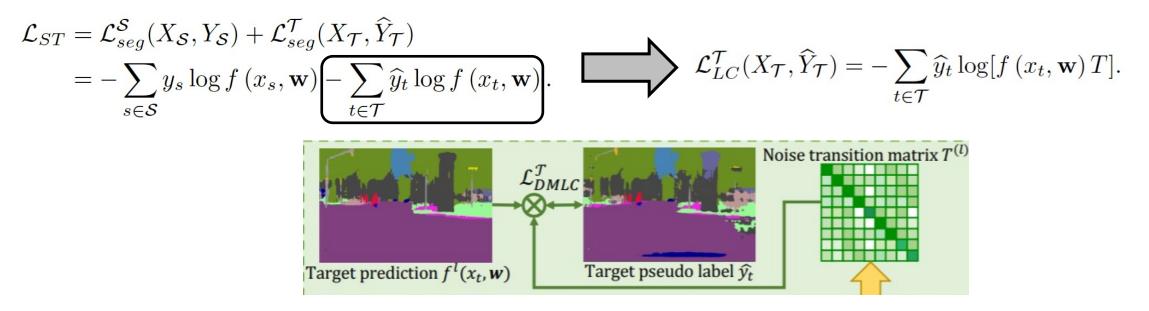


- Self-training with Loss Correction using NTM
 - NTM $T \in [0,1]^{C \times C}$: bridge pseudo labels \hat{Y}_t to the ground truth labels Y_t .
 - $T_{ik} = p(\hat{y}_t = k | y_t = j)$: the probability of ground truth label *j* flipping to noisy label *k*.

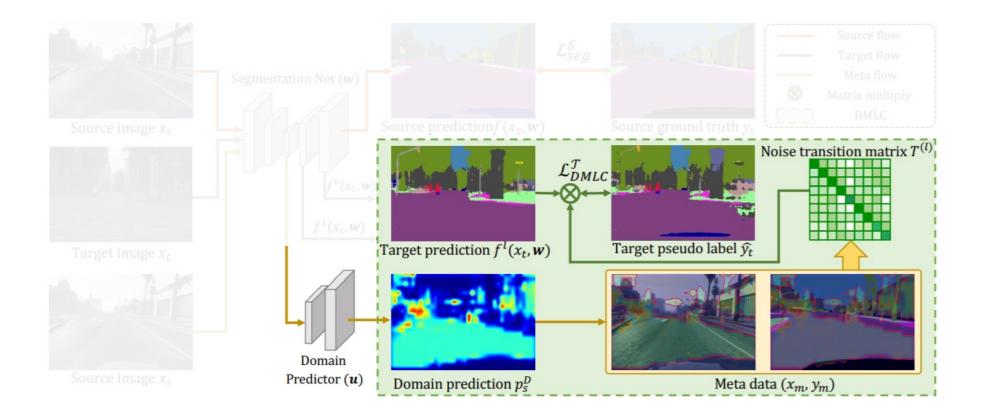
$$p(\widehat{y}_t = k \mid x_t, \mathbf{w}) = \sum_{j=1}^C T_{jk} p(y_t = j \mid x_t, \mathbf{w}),$$

$$\Rightarrow p(\widehat{y}_t \mid x_t, \mathbf{w}) = p(y_t \mid x_t, \mathbf{w})T.$$

Correct supervision signal for target domain data via NTM

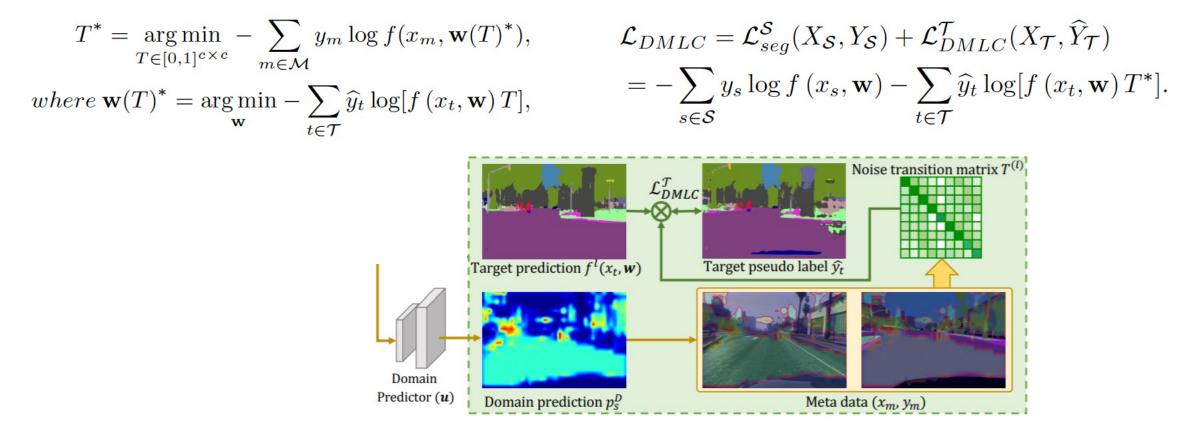


- Domain-aware Meta Loss Correction (DMLC)
 - A learnable NTM formally models the noise distribution of pseudo labels in target domain.
 - DMLC strategy estimates NTM for loss correction in a data driven manner.
 - Provide matched and compatible supervision signals for different layers.



Domain-aware Meta Loss Correction (DMLC)

- Aim to heuristically explore the inter-class noise transition probabilities.
- DMLC estimates T by minimizing the empirical risk on the domain-invariant meta data with clean labels
- DMLC optimizes the segmentation net with loss corrected by T^{*} on the unlabeled target data.



- Domain-aware Meta Loss Correction (DMLC)
 - Virtual Optimization

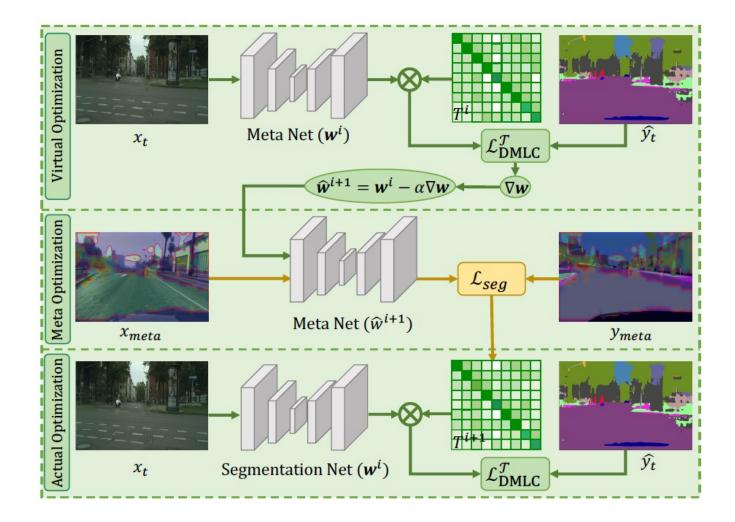
$$\hat{\mathbf{w}}^{i+1}(T^i) = \mathbf{w}^i + \gamma_v \nabla_{\mathbf{w}} \sum_{t \in \mathcal{T}} \widehat{y}_t \log[f(x_t, \mathbf{w}^i) T^i]$$

Meta Optimization

$$\widetilde{T}^{i+1} = T^i + \gamma_m \nabla_T \sum_{m \in \mathcal{M}} y_m \log f(x_m, \hat{\mathbf{w}}^{i+1}(T^i))$$

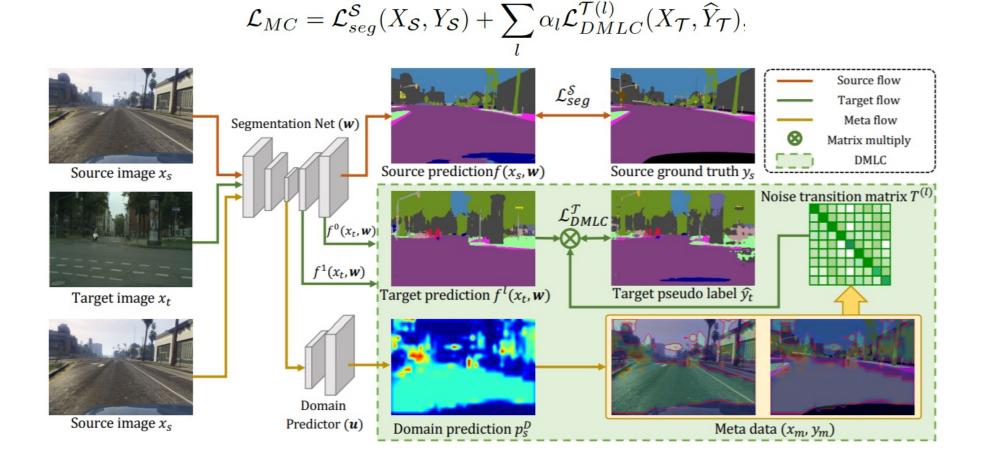
Actual Optimization

$$\mathbf{w}^{i+1} = \mathbf{w}^{i} + \gamma_a \nabla_{\mathbf{w}} \sum_{s \in S} y_s \log f(x_s, \mathbf{w}) + \gamma_a \nabla_{\mathbf{w}} \sum_{t \in T} \widehat{y}_t \log[f(x_t, \mathbf{w}) T^{i+1}]$$



MetaCorrection framework

- A learnable NTM formally models the noise distribution of pseudo labels in target domain.
- DMLC strategy estimates NTM for loss correction in a data driven manner.
- Provide matched and compatible supervision signals for different layers.



- ➢ Dataset of GTA5→CityScapes
 - **GTA5**: 24,966 images captured from a <u>virtual video game</u>.
 - **CityScapes**: a real-world dataset collected in <u>driving scenarios</u>. Training set: 2,975 unlabeled images Test set: 500 images

CityScapes

GTA5

➢ Results on GTA5→CityScapes

		$GTA5 \rightarrow CityScapes$																			
Methods	mech.	road	sidewalk	building	wall	fence	pole	traffic lgt	traffic sgn	veg.	terrain	sky	person	rider	car	truck	bus	train	motor	bike	mIoU
AdaptSegNet [40]	AL	86.5	36.0	79.9	23.4	23.3	23.9	35.2	14.8	83.4	33.3	75.6	58.5	27.6	73.7	32.5	35.4	3.9	30.1	28.1	42.4
PatchAlign [41]	AL	92.3	51.9	82.1	29.2	25.1	24.5	33.8	33.0	82.4	32.8	82.2	58.6	27.2	84.3	33.4	46.3	2.2	29.5	32.3	46.5
LTIR [20]	AL	92.9	55.0	85.3	34.2	31.1	34.9	40.7	34.0	85.2	40.1	87.1	61.0	31.1	82.5	32.3	42.9	0.3	36.4	46.1	50.2
CBST [51]	ST	91.8	53.5	80.5	32.7	21.0	34.0	28.9	20.4	83.9	34.2	80.9	53.1	24.0	82.7	30.3	35.9	16.0	25.9	42.8	45.9
CRST [50]	ST	91.0	55.4	80.0	33.7	21.4	37.3	32.9	24.5	85.0	34.1	80.8	57.7	24.6	84.1	27.8	30.1	26.9	26.0	42.3	47.1
MaxSquare [4]	ST	89.4	43.0	82.1	30.5	21.3	30.3	34.7	24.0	85.3	39.4	78.2	63.0	22.9	84.6	36.4	43.0	5.5	34.7	33.5	46.4
MLSL [17]	ST	89.0	45.2	78.2	22.9	27.3	37.4	46.1	43.8	82.9	18.6	61.2	60.4	26.7	85.4	35.9	44.9	36.4	37.2	49.3	49.0
PyCDA [23]	ST	90.5	36.3	84.4	32.4	28.7	34.6	36.4	31.5	86.8	37.9	78.5	62.3	21.5	85.6	27.9	34.8	18.0	22.9	49.3	47.4
IntraDA [30]	ST	90.6	37.1	82.6	30.1	19.1	29.5	32.4	20.6	85.7	40.5	79.7	58.7	31.1	86.3	31.5	48.3	0.0	30.2	35.8	46.3
CAG-UDA [46]	ST	90.4	51.6	83.8	34.2	27.8	38.4	25.3	48.4	85.4	38.2	78.1	58.6	34.6	84.7	21.9	42.7	41.1	29.3	37.2	50.2
Source only	-	75.8	16.8	77.2	12.5	21.0	25.5	30.1	20.1	81.3	24.6	70.3	53.8	26.4	49.9	17.2	25.9	6.5	25.3	36.0	36.6
Ours (single DMLC)	ST	92.5	55.1	85.9	36.9	32.4	34.7	41.4	37.0	85.3	37.8	87.4	62.7	31.8	84.5	36.8	48.2	2.2	34.3	47.3	51.2
Ours (MetaCorrection)	ST	92.8	58.1	86.2	39.7	33.1	36.3	42.0	38.6	85.5	37.8	87.6	62.8	31.7	84.8	35.7	50.3	2.0	36.8	48.0	52.1

Department of Electrical Engineering 香港城市大學 City University of Hong Kong

➢ Results on GTA5→CityScapes

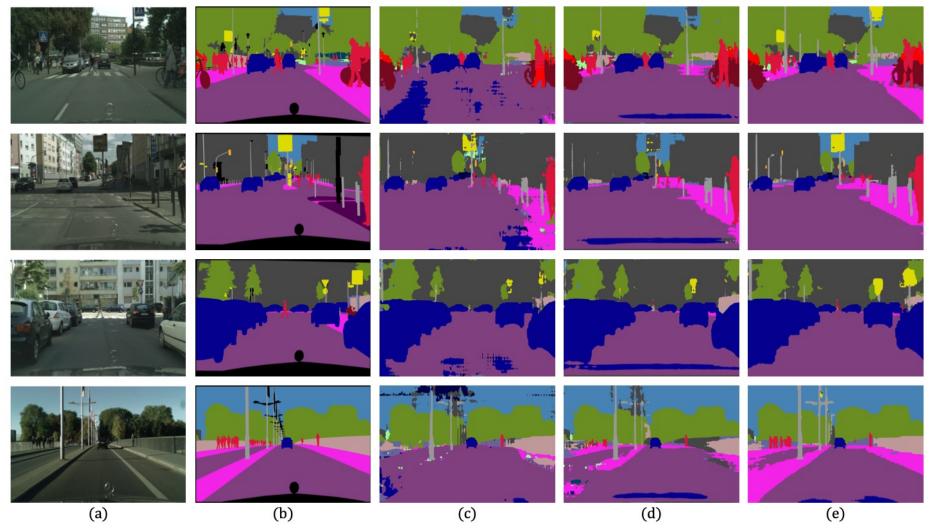


Figure 4. Qualitative results of UDA semantic segmentation in $GTA5 \rightarrow CityScapes$ scenario. (a) Target image, (b) Ground truth, Predictions from (c) source only model, (d) self-training based MRENT model, (e) ours (MetaCorrection).

- ➢ Dataset of SYNTHIA → CityScapes
 - SYNTHIA: 9,400 <u>synthetic</u> images.
 - **CityScapes**: a real-world dataset collected in <u>driving scenarios</u>. Training set: 2,975 unlabeled images Test set: 500 images

CityScapes

SYNTHIA

$\blacktriangleright \ Results \ on \ SYNTHIA \rightarrow CityScapes$

Table 2. Results of adapting SYNTHIA to CityScapes. mIoU* denotes the mean IoU of 13 classes, excluding the classes with *.

		SYNTHIA \rightarrow CityScapes																	
Methods	mech.	road	sidewalk	building	wall*	fence*	pole*	light	sign	veg.	sky	person	rider	car	pus	mbike	bike	mIoU	mIoU*
AdaptSegNet [40]	AL	84.3	42.7	77.5	-	-	—	4.7	7.0	77.9	82.5	54.3	21.0	72.3	32.2	18.9	32.3	—	46.7
PatchAlign [41]	AL	82.4	38.0	78.6	8.7	0.6	26.0	3.9	11.1	75.5	84.6	53.5	21.6	71.4	32.6	19.3	31.7	40.0	46.5
LTIR [20]	AL	92.6	53.2	79.2	_	_	_	1.6	7.5	78.6	84.4	52.6	20.0	82.1	34.8	14.6	39.4	_	49.3
CBST [51]	ST	68.0	29.9	76.3	10.8	1.4	33.9	22.8	29.5	77.6	78.3	60.6	28.3	81.6	23.5	18.8	39.8	42.6	48.9
CRST [50]	ST	67.7	32.2	73.9	10.7	1.6	37.4	22.2	31.2	80.8	80.5	60.8	29.1	82.8	25.0	19.4	45.3	43.8	50.1
MaxSquare [4]	ST	82.9	40.7	80.3	10.2	0.8	25.8	12.8	18.2	82.5	82.2	53.1	18.0	79.0	31.4	10.4	35.6	41.4	48.2
MLSL [17]	ST	59.2	30.2	68.5	22.9	1.0	36.2	32.7	28.3	86.2	75.4	68.6	27.7	82.7	26.3	24.3	52.7	45.2	51.0
PyCDA [23]	ST	75.5	30.9	83.3	20.8	0.7	32.7	27.3	33.5	84.7	85.0	64.1	25.4	85.0	45.2	21.2	32.0	46.7	53.3
IntraDA [30]	ST	84.3	37.7	79.5	5.3	0.4	24.9	9.2	8.4	80.0	84.1	57.2	23.0	78.0	38.1	20.3	36.5	41.7	48.9
CAG-UDA [46]	ST	84.7	40.8	81.7	7.8	0.0	35.1	13.3	22.7	84.5	77.6	64.2	27.8	80.9	19.7	22.7	48.3	44.5	51.5
Source only	_	55.6	23.8	74.6	9.2	0.2	24.4	6.1	12.1	74.8	79.0	55.3	19.1	39.6	23.3	13.7	25.0	33.5	38.6
Ours (single DMLC)	ST	92.3	53.0	80.2	7.7	2.8	26.9	11.4	8.1	83.1	85.2	58.9	20.5	85.5	35.9	21.0	41.8	44.6	52.1
Ours (MetaCorrection)	ST	92.6	52.7	81.3	8.9	2.4	28.1	13.0	7.3	83.5	85.0	60.1	19.7	84.8	37.2	21.5	43.9	45.1	52.5

Department of Electrical Engineering 香港城市大學 City University of Hong Kong

➢ Results on SYNTHIA → CityScapes

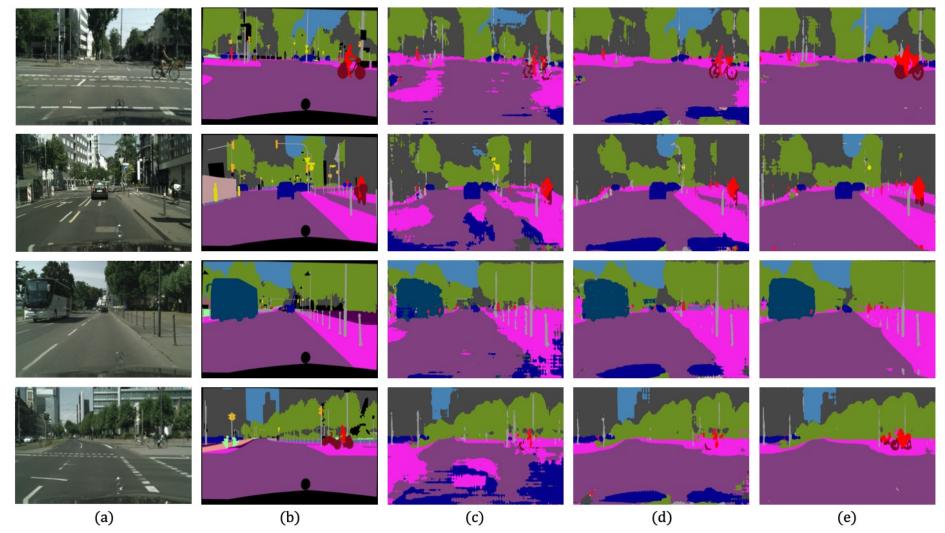
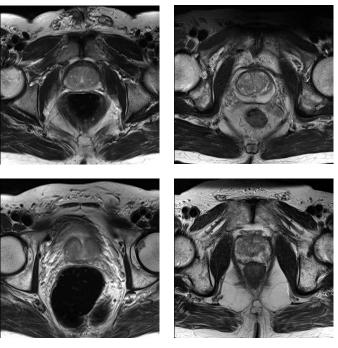


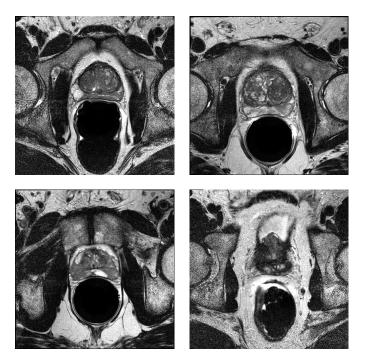
Figure 5. Qualitative results of UDA semantic segmentation in SYNTHIA \rightarrow CityScapes scenario. (a) Target image, (b) Ground truth, Predictions from (c) source only model, (d) self-training based MRENT model, (e) ours (MetaCorrection).

- $\blacktriangleright \quad \text{Dataset of Decathlon} \rightarrow \text{NCI-ISBI13}$
 - **Decathlon**: 32 prostate MRIs obtained from <u>3T (Siemens TIM)</u>.
 - NCI-ISBI13: 40 prostate MRIs obtained from <u>1.5 T (Philips Achieva)</u>.

Training set: 30 unlabeled 3D MRIs Test set: 10 3D MRIs



Decathlon



NCI-ISBI13

Department of Electrical Engineering 香港城市大學 City University of Hong Kong

$\blacktriangleright \ Results \ on \ Decathlon \rightarrow NCI-ISBI13$

Method	mech.	PZ (Dice)	TZ (Dice)	WP (Dice)
CBST [51]	ST	38.22	70.14	64.31
MRENT [50]	ST	40.82	72.39	67.68
MaxSquare [4]	ST	37.45	69.61	63.34
Source only	_	28.48	52.57	47.56
Ours (single DMLC)	ST	42.03	74.09	69.38
Ours (MetaCorrection)	ST	43.25	74.31	70.87

Table 3. Results of adapting Decathlon to NCI-ISBI13.

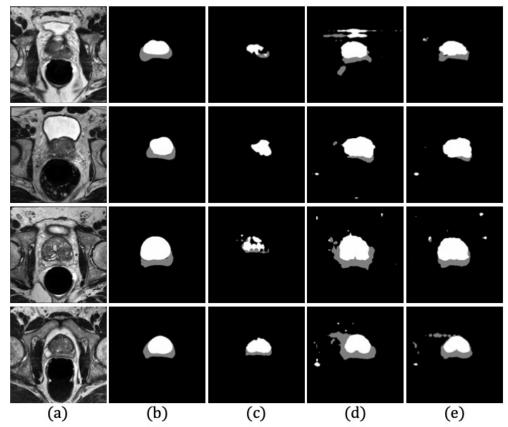


Figure 3. Qualitative results of UDA semantic segmentation in Decathlon \rightarrow NCI-ISBI13 scenario. (a) Target image, (b) Ground truth, Predictions from (c) source only model, (d) self-training based MRENT model, (e) ours (MetaCorrection).

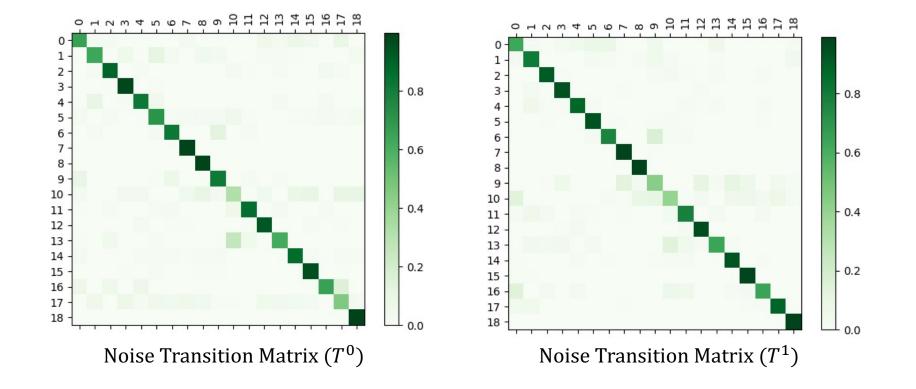
> Ablation Study

- Comparison with Self-training based UDA Models.
- Robustness to Various Types of Noise.

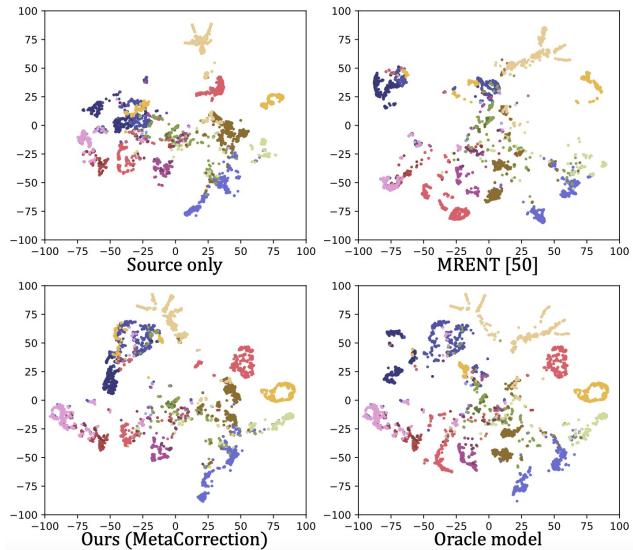
Table 4. Impact of different pseudo labels. 'Pseudo Label' denotes we employ pseudo labels generated by the corresponding model.

Method	Pseudo Label	$GTA5 \rightarrow$ CityScapes	Δ
AdaptSegNet [40]		42.4	_
Self-training (MRENT [50])	AdaptSegNet	45.1	2.7
Self-training (Threshold [51])	AdaptSegNet	44.4	2.0
Self-training (Ucertainty [48])	AdaptSegNet	46.1	3.7
Ours (single DMLC)	AdaptSegNet	45.9	3.5
Ours (MetaCorrection)	AdaptSegNet	47.3	4.9
LTIR [20]	_	50.2	-
Self-training (MRENT [50])	LTIR	50.6	0.4
Ours (single DMLC)	LTIR	51.2	1.0
Ours (MetaCorrection)	LTIR	52.1	1.9
Source only		36.6	-
Self-training (MRENT [50])	Source	39.6	3.0
Ours (single DMLC)	Source	43.8	7.2
Ours (MetaCorrection)	Source	44.5	7.9

- Visualization Results
 - NTM Visualization: different level learns different noise transition matrix.



- Visualization Results
 - Feature Visualization: our feature distribution is more similar to the oracle method.



- We advance a MetaCorrection framework, where a Domain-aware Meta-learning strategy is devised to benefit Loss Correction (DMLC) for UDA semantic segmentation.
 - NTM: models the noise distribution of pseudo labels in target domain.
 - DMLC strategy: estimates NTM for loss correction in a data driven manner.
 - To accommodate the capacity gap between shallow and deep features, DMLC strategy is further incorporated to provide compatible supervision signals for low-level features.

Thanks!