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Introduction
Ø Unsupervised Domain Adaptation (UDA) in Semantic Segmentation
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Introduction

Adaptation

Source Domain (Labeled) Target Domain (Unlabeled)

Ø Unsupervised Domain Adaptation (UDA) in Semantic Segmentation
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Introduction

Two major lines of approaches:

Ø Adversarial learning

n Ignore the domain-specific knowledge
n Could not guarantee the sufficient discriminative 

capability for the specific task.

[1] Toldo, Marco, et al. "Unsupervised domain adaptation in semantic segmentation: a review." Technologies 8.2 (2020): 35.
[2] Zou, Yang, et al. "Confidence regularized self-training." ICCV. 2019.

Adversarial learning for UDA in semantic segmentation [1] 

Self-training for UDA in semantic segmentation [2]
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Ø Self-training

n The generated pseudo labels contain noises.



Motivation

Ø Noise Transition Matrix (NTM)
n It aims to model the inter-class misclassification relationship of target data. 

Ø Domain-aware Meta-learning for Loss Correction (DMLC)
n Since ground truth in the target domain is not available, NTM can’t be directly calculated, We try to 

estimate the NTM in a learning-to-learn fashion.
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Method

Ø MetaCorrection framework
n A learnable NTM formally models the noise distribution of pseudo labels in target domain.
n DMLC strategy estimates NTM for loss correction in a data driven manner.
n Provide matched and compatible supervision signals for different layers.
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Method

Ø Self-training with Loss Correction using NTM
n A learnable NTM formally models the noise distribution of pseudo labels in target domain.
n DMLC strategy estimates NTM for loss correction in a data driven manner.
n Provide matched and compatible supervision signals for different layers.
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Method

Ø Self-training with Loss Correction using NTM
n NTM 𝑇 ∈ [0,1]#×#: bridge pseudo labels (𝑌% to the ground truth labels 𝑌%.
n 𝑇&' = 𝑝 ,𝑦% = 𝑘 𝑦% = 𝑗 : the probability of ground truth label 𝑗 flipping to noisy label 𝑘.

n Correct supervision signal for target domain data via NTM
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Method

Ø Domain-aware Meta Loss Correction (DMLC)
n A learnable NTM formally models the noise distribution of pseudo labels in target domain.
n DMLC strategy estimates NTM for loss correction in a data driven manner.
n Provide matched and compatible supervision signals for different layers.
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Method

Ø Domain-aware Meta Loss Correction (DMLC)
n Aim to heuristically explore the inter-class noise transition probabilities. 
n DMLC estimates T by minimizing the empirical risk on the domain-invariant meta data with clean labels 
n DMLC optimizes the segmentation net with loss corrected by T* on the unlabeled target data.
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Method

Ø Domain-aware Meta Loss Correction (DMLC)

n Virtual Optimization

n Meta Optimization

n Actual Optimization
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Method

Ø MetaCorrection framework
n A learnable NTM formally models the noise distribution of pseudo labels in target domain.
n DMLC strategy estimates NTM for loss correction in a data driven manner.
n Provide matched and compatible supervision signals for different layers.
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Ø Dataset of    
n GTA5: 24,966 images captured from a virtual video game. 
n CityScapes: a real-world dataset collected in driving scenarios. 

Training set: 2,975 unlabeled images       Test set: 500 images

Experiments
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GTA5 CityScapes



Experiments

Ø
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Experiments

Ø
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Ø Dataset of    
n SYNTHIA: 9,400 synthetic images.
n CityScapes: a real-world dataset collected in driving scenarios. 

Training set: 2,975 unlabeled images       Test set: 500 images

SYNTHIA CityScapes

Experiments
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Experiments

Ø
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Experiments

Ø
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Experiments
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Ø Dataset of
n Decathlon: 32 prostate MRIs obtained from 3T (Siemens TIM).
n NCI-ISBI13: 40 prostate MRIs obtained from 1.5 T (Philips Achieva). 

Training set: 30 unlabeled 3D MRIs        Test set: 10 3D MRIs

Decathlon NCI-ISBI13



Experiments

Ø
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Experiments

Ø Ablation Study
n Comparison with Self-training based UDA Models.
n Robustness to Various Types of Noise.
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Experiments

Ø Visualization Results
n NTM Visualization: different level learns different noise transition matrix.

Noise	Transition	Matrix	(𝑇!)Noise	Transition	Matrix	(𝑇")
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Experiments

Ø Visualization Results
n Feature Visualization: our feature distribution is more similar to the oracle method.
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Ø We advance a MetaCorrection framework, where a Domain-aware Meta-learning strategy is 
devised to benefit Loss Correction (DMLC) for UDA semantic segmentation.

n NTM: models the noise distribution of pseudo labels in target domain.
n DMLC strategy: estimates NTM for loss correction in a data driven manner.
n To accommodate the capacity gap between shallow and deep features, DMLC strategy is 

further incorporated to provide compatible supervision signals for low-level features.
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Conclusion
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